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Ising cubes with enhanced surface couplings

M. Pleimling and W. Selke
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Using Monte Carlo techniques, Ising cubes with ferromagnetic nearest-neighbor interactions and enhanced
couplings between surface spins are studied. In particular, at the surface transition, the corner magnetization
shows nonuniversal, coupling-dependent critical behavior in the thermodynamic limit. Results on the critical
exponent of the corner magnetization are compared to previous findings on two-dimensional Ising models with
three intersecting defect lines.

PACS numbsgps): 05.50+q, 68.35.Rh, 75.40.Mg

I. INTRODUCTION Il. MODEL, METHOD AND RESULTS

We study nearest-neighbor Ising models on simple cubic
In the thermodynamic limit, critical phenomena may oc-lattices withL X M X N spins(usually we shall consider Ising
cur not only in the bulk of a system, but also at its surfacesgubes, i.e.L=M=N) and ferromagnetic interactions. The
edges, and corners. To be specific, let us consider Ising magiamiltonian may be written in the form
nets with short-range interactions. Then, there are two typi-
cal scenariosta) bulk m,, surfacem;, edgem,, and corner
my magnetizations may order at the same temperdtime H=— %( IpSqySxryrz _S%ce‘]ssxyzsx’y’z’
dinary transition’), but with different power laws an¢b)
surface, edge, and corner magnetizations may order simulta-
neously first(“surface transition”) due to enhanced, strong _edgzurface‘JEQVZ&’y’z’_%Q‘JE&YZSWV’Z’ @
surface couplings, followed by ordering of the bulk magne-
tization at the lower bulk transition temperatutextraordi- With spinsS,,,= * 1 at sites ky2); the sums run over bonds

nary trans.it.ion’). Surface singulgrities at ordinary and SUP hetween neighboring spins with coupling constants to be
face transitions have been studied extensively, theoretlca"gpeciﬁed belowx(y,z) going from 1 toL (M,N) (setting the
[1,2] as well as experimentally3]. Most of the rather few |54ice constant equal to opeFree boundary conditions hold
St[l_JdIeS on edge critical behavior dealt W!th the ordinary tranty the spins in the surface planes. The pairs of neighboring
sition [4—7]. Only very recently, edge criticality both at the gpins in the Hamiltoniartl) are located either on edge sites
surface transitior{8] and at the normal transitiof®] has  \yith the edge couplind., on edge and surface sites coupled
been investigated. by Jes, ON surface sites with the interactidg, or on sites
Similarly, corner criticality in three-dimensional Ising with at least one of the spins in the interior of the system
systems has been analyzed, to our knowledge, only at th@teracting with the bulk couplingl,. We refrained from
ordinary transition, applying mean-field theofft0] and  assigning another coupling strength to pairs of spins on cor-
Monte Carlo simulation§7]. However, that case deserves to ner and edge sites, which is taken to be equalto
be studied at the surface transition as well for various rea- To study the behavior at the surface transitibn, we
sons. For magnetic properties of nanostructured materialghoseJs=2J,, wherekgTs/J,~4.975[8], while the bulk
corners are expected to play an important rdl&,12. In  transitionT. occurs atgT./J,~4.5115[16,17]. The effect
addition, magnetism may be enhanced at surfaces, especiafly the edge couplings was studied by considering the three
at step edges and corners of, e.g., metals by increased loczdses(i) of equal surface couplings, i.el,=Jes=Js, (ii) of
magnetic moments and/or couplinpk3,14. More detailed reduced edge couplings, especially=Js, Jo=Jp,, and(iii)
future investigations on this aspect, using, for instance, derPf reduced edge-surface couplings, especidllyJs, Jes
sity functional methods, are encouraged. Last, but not least Jp -
the problem is of genuine theoretical interest. At the surface The size of the Ising cubes wib® spins ranged front.
transition, the critical fluctuations are essentially two dimen-=5 to L=80. In the Monte Carlo simulations, we used the
sional. Edges are local perturbations acting then similar t&fficient single-cluster-flip algorithm. Thermal averages were
defect lines in two-dimensional Ising models leading to in-OPtained from an ensemble of at least f6alizations, using
teresting nonuniversal critical phenomef0,8]. Accord- different random numbers. In each reallza_t!on, .severél 10
ingly, corners, say, of an Ising cube may be interpreted aglusters were taken |r)to. accoun.t, after equilibration. o
intersection points of three defect lines. At such points, one The quantity of main interest is the corner magnet|z_at|on,
also expects intriguing nonuniversal behavior of local quan—Or more general, the local .magnetlzatmm(x,y,;) at S'te.
tities, such as the corner magnetization, following exact ana*¥2- Mi(x,y,z) may be defined by the correlation function
lytical work on two-dimensional Ising systems with inter-

secting defect linegl5]. mi(X,Y,2) = (S«ySuryrz/) 2
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FIG. 1. Simulated profile of the local magnetization at the sur-

face,m;(x,y,1), for an Ising model of 4Dspins with equal surface fFlG' f2 Magfn_etlzatl%n Fr(;gg'("' ,1)tr<’:1long tlhe dflagonal ofl_the
couplings Jo=Joc=J.=2J; , atkgT/Jy=4.9. surface for an Ising model of 4@pins with equal surface couplings

Je=Jes=Js=27,,, at kgT/J,=4.9,4.7, and 4.4from bottom to

where kyz) and (x'y’z’) are topologically equivalent sites top). Error bars are smaller than the size of the symbols.
with maximal separation distance; brackets denote the ther-
mal average. In the thermodynamic limit—o, one recov- =J=2J, and J,=J;,, and (iii) 0.26+0.02 atJ,=J.=2J,
ers the standard definition of the local magnetizationand J..=J,,. In addition, we estimateg@; at the ordinary
m(x,y,z) =(Syy2- Mi(X,y,z) approaches closely(x,y,z)  transition,Jo=Jes=Js=J}, t0 be B3=1.77+0.05, confirm-
provided the separation distance between the two equivalefrig and refining our previous estimate based on computing
spins is large compared to the correlation length. Certainlythe corner magnetization from metastable std#s Error
finite-size effects are most severe near criticality, as usuabars are inferred from “reasonable” extrapolations of the
The deviation ofm; from m may be monitored by varying effective exponent, see Fig. 3.
the size of the cubek and by considering the correlation  To explain the Monte Carlo findings g8y, note that the
function between spins on equivalent sites with differentcritical fluctuations at the surface transition are essentially
separation distance$or instance, two corner spins may be two dimensional and that corners are intersection points of
connected either by an edge, by a surface diagonal, or by thie edges. Now, as had been shown beféigeat the surface
bulk diagonal. transition edges act as ladder- or chain-type defect [ib@s

In Fig. 1 the intriguing profile of the local magnetization 21,10 The critical exponeng, of the edge magnetization is
at the surfacem(x,y,1), of a 4@ Ising cube with equal nonuniversa[being nontrivial even in casé) of equal sur-
surface couplings, cag#), is depicted, akgT/J,=4.9, i.e., face couplings, due to the coupling to bulk sgingarying
T~0.985Ts. The nonmonotonic behavior along paths fromwith the edgel, and edge-surfacd,.. couplings[8]. To a
the edges or corners towards the center of the surface reflegjg/en set of interactiond, andJ,s, one may assign roughly
the influence of bulk spins, as has been discussed bEtre an effective defect coupling of ladder or chain typg,ﬂ,

Crossover to monotonicity of the profile, with the largestyielding the same critical exponent for the defect mag-
magnetization at the corners, is expected to occur even closer

to T, in sufficiently large systems. At lower temperatures,
roughly T<T,, the profile is monotonic as well, with the
smallest magnetization at the corners due to the different
coordination numbers at corners, edges, and surfaces, see¢
Fig. 2.

Near the surface transitioilg, the corner magnetization,
say,m;=m(1,1,1), is expected to vanish, in the thermody-
namic limit, asmst#3, wheret is the reduced temperature
t=|T—T,/Ts. To estimateB;, we consider the effective
exponent7,8,18 Bei(t) =d Inmg/dInt. When analyzing the
Monte Carlo data, the derivative is replaced by a difference
at discrete temperatures. As>0, B approachegs, pro-
vided finite-size effects can be neglected.

The temperature dependence of the effective exponent o.o00 . X . 2 . 03 . o4
Beii for the three different sets of couplings), (i), and(iii), ) ’ ’ ) ’
is shown in Fig. 3, displaying only data which were checked t
to be unaffected by finite—size effects. Error bars stem from FIG. 3. Effective exponenB. versus reduced temperaturior
the ensemble averaging performed to determigeThe re- (i) J,=J,.=J (square} (ii) Jos=Js, Jo=J} (triangles, and (i)
sulting estimates for the asymptotic critical exponggtare  J,=J;, J.=J,, (circles. Ising cubes with up to §0spins were
(i) 0.06+0.01 atJ.=J.s=Js=2Jp, (ii) 0.14+0.015 atJ.s  simulated, circumventing finite-size effects.
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netization in the two-dimensional Ising modgl and for the  agreement with the Monte Carlo findings B8g. Of course, a
edge magnetization at the surface transition of the threemore refined analysis had to take into account, e.g., the
dimensional Ising modeB,. Specifically, for a ladder-type rather complicatedsee also the nonmonotonic profiles in
defect, the critical exponent of the magnetization in the lad+igs. 1 and 2nature of the edge as a simultaneously ladder-

der rowsp, is given by[20,2] and chain-type defect line as well as the effect of the bulk
PR spin next to the corner on the corner magnetization. Indeed,
Bi=2 arctaf(x; ')/ w (3)  the good agreement betwegy and 3; in casel(ii) may be

related to the fact that the chainlike character is rather weak
in that situation. The bulk spin is expected to strengthen the
effective coupling at the corner especially in cagegiving

rise to the reduction irB; as compared t@; .

with «;=tanHJ,/(kgTog) VtanH J/(kgT,gq)], Where T4 is the
transition temperature. Comparigy and 3,, one may in-
terpret the defect coupling, of the two-dimensional model

. . . f-f . .
as the desired effective couplig” (J is the coupling con- Certainly, bulk properties will become critical only at the
stant away from the defect line, correspondinglian the  extraordinary transition, akgT./Jp~4.5115. For instance,
three-dimensional systefns the specific hea€ is expected to diverge there, in the ther-

Following this analogy, the critical exponent of the corner yodynamic limit. For finite,L Ising cubes, one observes
magnetlz_atlonﬂg,_can be related to that of_ the magnetizationnat a maximum irC nearT, shows up only for systems with
at the intersection of three defect lines in the two-gt |east a few thousands spins, getting more pronounced as
dimensional Ising modeB; , with effective defect couplings pe system size increaséwe studied caséi) with equal
Jgﬁ. |ndeed, in the two-dimensional ISing mOdel, the Valuesurface Coup"ngs anﬂjS: 2Jb] On the other hand, the maxi-
of B; has been calculated exactly for three intersecting laddefum in C near the surface transitich, dominates for small
defects by Henkett al.[15], showing a nonuniversal behav- cupes, becoming more and more suppressed as one increases
ior, with B; depending on the strength of the defect couplingshe sizeL. For cubes of moderate size, say<l5<60, the
J;. If those couplings are weaker than in the rest of thelemperature dependence of the specific heat is characterized
system, theng; will increase with decreasing|(<J), Bi by an easily detectable two-peak structure, with maxima
>1/8, 1/8 being the well-known Onsager value in the isotro-close toT, and Ts. The height of the two peaks may be
pic two-dimensional Ising model. In turn, if the defect cou- easily varied by replacing the Ising cubes by slabs.
plings get stronger, theg; will get smaller. The concrete  |n summary, the corner magnetization at the surface tran-
expression fog; is quite lengthy[15] and will not be repro-  sition of Ising cubes has been found to display nonuniversal
duced here, but it can be evaluated in a straightforward wayritical behavior, with the critical exponet; of the corner

The effective ladder-type defect couplingff in the three  magnetization(being distinct from the corresponding edge
cases we considered af® J§“~ 1.22]¢ corresponding to exponentf,) depending on the strength of the edge and
B,~0.095[8] in the case of equal surface couplings, i.e., anedge-surface couplings. The concrete valueBgfmay be
effective enhancement of the couplings at the edges due w@pproximated rather well from the exactly known value of
the influence of bulk spingii) J§"~0.99), corresponding to  the critical exponent of the magnetization at the intersection
B,~0.127 [8] for weakened edge couplings, i.e., the en-point of three defect lines in the two-dimensional Ising
hancement is now approximately compensated by the weaknodel by estimating effective defect couplings from the edge
ening of J., and (iii) J§"~0.74); corresponding toB,  critical behavior.
~0.176[8] for weakened edge-surface couplings, overcom-
pensating the enhancement by the reductiodi.i(note that
the values of3, differ significantly from those of33). Using
these estimates dﬁ“, one obtains from the exact expression It is a pleasure to thank M. Henkel and I. Peschel for very
[15] for the two-dimensional Ising model with three inter- helpful suggestions and discussions. Financial support by the
secting ladder defects of those strengths the following valueBeutsche Forschungsgemeinschaft is gratefully acknowl-
for B; (i) 0.082, (ii) 0.128, and(iii) 0.21, in satisfactory edged.
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